Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Christoph Aubauer, Thomas M. Klapötke* and Peter Mayer

Department of Chemistry, Ludwig-MaximiliansUniversity, Butenandtstraße 5-13 (D), D-81377 Munich, Germany

Correspondence e-mail:
tmk@cup.uni-muenchen.de

Key indicators

Single-crystal X-ray study
$T=201 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{P})=0.003 \AA$
R factor $=0.027$
ωR factor $=0.076$
Data-to-parameter ratio $=28.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

1,1,1,2,2-Pentaiododiphosphanium tetraiodogallate(III)

1,1,1,2,2-Pentaiododiphosphanium tetraiodogallate(III), $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{GaI}_{4}\right]$, crystallizes in the orthorhombic space group Pbca. The structure is isotypic with $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{AlI}_{4}\right]$. Short I $\cdots \mathrm{I}$ interatomic distances indicate weak interactions between cations and anions.

Comment

The 2:1 adduct of PI_{3} and AlI_{3} was structurally characterized by X-ray crystallography and identified as $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{AlI}_{4}\right]$ (Pohl, 1983). Recently, the 1,1,1,2,2-pentaiododiphosphanium cation species $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[E \mathrm{I}_{4}\right](E=\mathrm{Al}, \mathrm{Ga}$, In$)$ have been characterized by solid-state ${ }^{31} \mathrm{P}$ MAS NMR and vibrational spectroscopy (Aubauer et al., 1999). The crystal structure of $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{GaI}_{4}\right]$ is isotypic with the structure found for $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{AlI}_{4}\right]$. The $\mathrm{P} 1-\mathrm{P} 2$ bond distance is comparable with the $\mathrm{P}-\mathrm{P}$ bond length of 2.218 (13) \AA in $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{AlI}_{4}\right]$ (Pohl, 1983) and 2.230 (3) \AA in $\mathrm{P}_{2} \mathrm{I}_{4}$ (Zak \& Cernik, 1996). The $\mathrm{P}_{2} \mathrm{I}_{5}{ }^{+}$cation displays a staggered configuration (Fig. 1), with an $\mathrm{I} 1-\mathrm{P} 1-\mathrm{P} 2-\mathrm{I} 4$ torsion angle of $-52.3(1)^{\circ}$. The $\mathrm{P} 2-\mathrm{I} 4$ and $\mathrm{P} 2-\mathrm{I} 5$ bond lengths of the PI_{2} unit are significantly longer than the $\mathrm{P} 1-\mathrm{I} 1, \mathrm{P} 1-\mathrm{I} 2$ and $\mathrm{P} 1-\mathrm{I} 3$ bond lengths found for the PI_{3} unit. The $\mathrm{GaI}_{4}{ }^{-}$ unit has a slightly distorted tetrahedral geometry. The Ga-I bond distances range between 2.521 (1) and 2.577 (1) \AA, and the $\mathrm{I}-\mathrm{Ga}-\mathrm{I}$ bond angles between 105.15 (4) and 112.18 (4) ${ }^{\circ}$, similar to the bond lengths and angles found in $\left(\mathrm{TeI}_{3}\right)\left[\mathrm{GaI}_{4}\right]$ (Schulz-Lang et al., 1998). Similar to $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{AlI}_{4}\right]$ (Pohl, 1983), the structure of $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{GaI}_{4}\right]$ shows weak interatomic $\mathrm{I} \cdots \mathrm{I}$ distances in the range 3.4002 (8)-3.9168 (8) \AA between the $\mathrm{P}_{2} \mathrm{I}_{5}{ }^{+}$and the $\mathrm{GaI}_{4}{ }^{-}$units (Fig. 2), which are significantly shorter than the sum of the van der Waals radii (ca $4.3 \AA$), indicating weak cation-anion interactions.

Figure 1
The molecular structure of $\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{GaI}_{4}\right]$ showing 50% probability displacement ellipsoids.

Received 8 November 2000
Accepted 22 November 2000
Online 14 December 2000

Figure 2
Packing diagram viewed down the a axis.

Experimental

$\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)$ [GaI_{4}] was prepared by the reaction of $\mathrm{PI}_{3}(0.84 \mathrm{~g}, 2.00 \mathrm{mmol})$ and $\mathrm{GaI}_{3}(0.45 \mathrm{~g}, 1.00 \mathrm{mmol})$ in $\mathrm{CS}_{2}(20 \mathrm{ml})$ at room temperature. The solvent was slowly removed under static vacuum, yielding red crystals.

Crystal data

$\left(\mathrm{P}_{2} \mathrm{I}_{5}\right)\left[\mathrm{GaI}_{4}\right]$
$M_{r}=1273.81$
Orthorhombic, Pbca
$a=10.7960$ (5) \AA
$b=18.1687$ (8) \AA
$c=20.1886(10) \AA$
$V=3960.0(3) \AA^{3}$
$Z=8$
$\mathrm{Z}=8$
$D_{x}=4.273 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS image-plate diffractometer

φ scans

Absorption correction: numerical crystal faces optimized with Stoe XSHAPE (Stoe, 1997) then a numerical absorption correction with $X R E D$ (revision 1.09; Stoe, 1997)
$T_{\text {min }}=0.194, T_{\text {max }}=0.395$
10907 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.076$
$S=0.96$
3094 reflections
109 parameters

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.035 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.38 \mathrm{e} \AA^{-3}(0.82 \AA \text { from I } 3) \\
& \Delta \rho_{\min }=-1.23 \mathrm{e}^{-3}(0.90 \AA \text { from } \\
& \mathrm{I} 3)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Ga}-\mathrm{I} 6$	$2.5210(10)$	$\mathrm{P} 1-\mathrm{I} 3$	$2.391(2)$
$\mathrm{Ga}-\mathrm{I} 8$	$2.5330(10)$	$\mathrm{P} 1-\mathrm{I} 1$	$2.401(2)$
$\mathrm{Ga}-\mathrm{I} 9$	$2.5549(10)$	$\mathrm{P} 1-\mathrm{I} 2$	$2.413(2)$
$\mathrm{Ga}-\mathrm{I} 7$	$2.5771(10)$	$\mathrm{P} 2-\mathrm{I} 4$	$2.421(2)$
$\mathrm{P} 1-\mathrm{P} 2$	$2.227(3)$	$\mathrm{P} 2-\mathrm{I} 5$	$2.442(2)$
$\mathrm{I} 6-\mathrm{Ga}-\mathrm{I} 8$	$110.60(4)$	$\mathrm{I} 3-\mathrm{P} 1-\mathrm{I} 1$	$108.72(8)$
$\mathrm{I} 6-\mathrm{Ga}-\mathrm{I} 9$	$109.75(4)$	$\mathrm{P} 2-\mathrm{P} 1-\mathrm{I} 2$	$105.98(10)$
$\mathrm{I} 8-\mathrm{Ga}-\mathrm{I} 9$	$109.71(4)$	$\mathrm{I} 3-\mathrm{P} 1-\mathrm{I} 2$	$109.04(9)$
$\mathrm{I} 6-\mathrm{Ga}-\mathrm{I} 7$	$112.18(4)$	$\mathrm{I} 1-\mathrm{P} 1-\mathrm{I} 2$	$109.09(9)$
$\mathrm{I} 8-\mathrm{Ga}-\mathrm{I} 7$	$109.30(4)$	$\mathrm{P} 1-\mathrm{P} 2-\mathrm{I} 4$	$95.56(10)$
$\mathrm{I} 9-\mathrm{Ga}-\mathrm{I} 7$	$105.15(4)$	$\mathrm{P} 1-\mathrm{P} 2-\mathrm{I} 5$	$95.05(10)$
$\mathrm{P} 2-\mathrm{P} 1-\mathrm{I} 3$	$106.25(11)$	$\mathrm{I} 4-\mathrm{P} 2-\mathrm{I} 5$	$103.13(9)$
$\mathrm{P} 2-\mathrm{P} 1-\mathrm{I} 1$	$117.50(11)$		

Table 2
Selected contact distancess (\AA).

$\mathrm{I} 1 \cdots \mathrm{I} \mathrm{T}^{\mathrm{i}}$	$3.4420(9)$	$\mathrm{I} 4 \cdots \mathrm{I} \mathrm{I}^{\mathrm{iii}}$	$3.7264(8)$
$\mathrm{I} 2 \cdots \mathrm{I} 9^{\mathrm{ii}}$	$3.4002(8)$	$\mathrm{I} 5 \cdots \mathrm{I} 7^{\mathrm{iv}}$	$3.6598(8)$

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1+x, y, z$; (iii) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y, z$.

Data collection: IPDS Software Manual (Stoe, 1997); cell refinement: IPDS Software Manual; data reduction: IPDS Software Manual; program(s) used to solve structure: SIR97 (Cascarano et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997). SCHAKAL (Keller, 1995) and DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON95 (Spek, 1995).

References

Aubauer, C., Engelhardt, G., Klapötke, T. M. \& Schulz, A. (1999). J. Chem. Soc. Dalton Trans. pp. 1729-1733.
Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
Cascarano, G., Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Siliqi, D., Burla, M. C., Polidori, G. \& Camalli, M. (1996). Acta Cryst. A52, C-79.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Keller, E. (1995). SCHAKAL. University of Freiburg (Breisgau), Germany.
Pohl, S. (1983). Z. Anorg. Allg. Chem. 498, 20-24.
Schulz-Lang, E., Abram, U., Strähle, J. \& Vazquez Lopez, E. M. (1998). Z. Anorg. Allg. Chem. 624, 999-1002.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1995). PLATON95. University of Utrecht, The Netherlands.
Stoe (1997). IPDS Software Manual. Version 2.81. Stoe Publication 4805-015, Darmstadt, Germany.
Zak, Z. \& Cernik, M. (1996). Acta Cryst. C52, 290-291.

