Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christoph Aubauer, Thomas M. Klapötke* and Peter Mayer

Department of Chemistry, Ludwig-Maximilians-University, Butenandtstraße 5-13 (D), D-81377 Munich, Germany

Correspondence e-mail: tmk@cup.uni-muenchen.de

Key indicators

Single-crystal X-ray study T = 201 KMean $\sigma(P-P) = 0.003 \text{ Å}$ R factor = 0.027 wR factor = 0.076 Data-to-parameter ratio = 28.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,1,1,2,2-Pentaiododiphosphanium tetraiodogallate(III)

1,1,1,2,2-Pentaiododiphosphanium tetraiodogallate(III), $(P_2I_5)[GaI_4]$, crystallizes in the orthorhombic space group *Pbca*. The structure is isotypic with $(P_2I_5)[AII_4]$. Short $I \cdots I$ interatomic distances indicate weak interactions between cations and anions. Received 8 November 2000 Accepted 22 November 2000 Online 14 December 2000

Comment

The 2:1 adduct of PI₃ and AlI₃ was structurally characterized by X-ray crystallography and identified as $(P_2I_5)[AII_4]$ (Pohl, 1983). Recently, the 1,1,1,2,2-pentaiododiphosphanium cation species $(P_2I_5)[EI_4]$ (E = AI, Ga, In) have been characterized by solid-state ³¹P MAS NMR and vibrational spectroscopy (Aubauer *et al.*, 1999). The crystal structure of $(P_2I_5)[GaI_4]$ is isotypic with the structure found for $(P_2I_5)[AII_4]$. The P1-P2 bond distance is comparable with the P-P bond length of 2.218 (13) Å in $(P_2I_5)[AII_4]$ (Pohl, 1983) and 2.230 (3) Å in P_2I_4 (Zak & Cernik, 1996). The $P_2I_5^+$ cation displays a staggered configuration (Fig. 1), with an I1-P1-P2-I4 torsion angle of -52.3 (1)°. The P2-I4 and P2-I5 bond lengths of the PI₂ unit are significantly longer than the P1-I1, P1-I2 and P1-I3 bond lengths found for the PI₃ unit. The GaI₄⁻ unit has a slightly distorted tetrahedral geometry. The Ga-I bond distances range between 2.521 (1) and 2.577 (1) Å, and the I-Ga-I bond angles between 105.15 (4) and 112.18 (4) $^{\circ}$, similar to the bond lengths and angles found in (TeI₃)[GaI₄] (Schulz-Lang et al., 1998). Similar to $(P_2I_5)[AII_4]$ (Pohl, 1983), the structure of $(P_2I_5)[GaI_4]$ shows weak interatomic I···I distances in the range 3.4002 (8)-3.9168 (8) Å between the $P_2I_5^+$ and the GaI_4^- units (Fig. 2), which are significantly shorter than the sum of the van der Waals radii (ca 4.3 Å), indicating weak cation-anion interactions.

The molecular structure of (P₂I₅)[GaI₄] showing 50% probability

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 Packing diagram viewed down the *a* axis.

Experimental

 $(P_2I_5)[GaI_4]$ was prepared by the reaction of PI_3 (0.84 g, 2.00 mmol) and GaI_3 (0.45 g, 1.00 mmol) in CS₂ (20 ml) at room temperature. The solvent was slowly removed under static vacuum, yielding red crystals.

Crystal data

$(P_2I_5)[GaI_4]$
$M_r = 1273.81$
Orthorhombic, Pbca
a = 10.7960(5) Å
b = 18.1687 (8) Å
c = 20.1886 (10) Å
$V = 3960.0 (3) \text{ Å}^3$
Z = 8
$D_x = 4.273 \text{ Mg m}^{-3}$

Data collection

Stoe IPDS image-plate diffractometer

 φ scans

Absorption correction: numerical crystal faces optimized with Stoe XSHAPE (Stoe, 1997) then a numerical absorption correction with XRED (revision 1.09; Stoe, 1997) $T_{min} = 0.194, T_{max} = 0.395$

10 907 measured reflections

Mo $K\alpha$ radiation Cell parameters from 5000 reflections $\theta = 2.4-24.0^{\circ}$ $\mu = 15.55 \text{ mm}^{-1}$ T = 200 (3) KIrregular, red $0.19 \times 0.12 \times 0.10 \text{ mm}$

3094 independent reflections
2570 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.097$
$\theta_{\rm max} = 24^{\circ}$
$h = -12 \rightarrow 12$
$k = -16 \rightarrow 20$
$l = -19 \rightarrow 23$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.035P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.027$	where $P = (F_o^2 + 2F_c^2)/3$
$vR(F^2) = 0.076$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 0.96	$\Delta \rho_{\rm max} = 1.38 \text{ e} \text{ Å}^{-3} (0.82 \text{ Å from I3})$
3094 reflections	$\Delta \rho_{\rm min} = -1.23 \text{ e} \text{ Å}^{-3} (0.90 \text{ Å from})$
109 parameters	I3)

Table 1

Selected geometric parameters (Å, °).

Ga-I6	2.5210 (10)	P1-I3	2.391 (2)
Ga-I8	2.5330 (10)	P1-I1	2.401 (2)
Ga-I9	2.5549 (10)	P1-I2	2.413 (2)
Ga-I7	2.5771 (10)	P2-I4	2.421 (2)
P1-P2	2.227 (3)	P2-I5	2.442 (2)
I6-Ga-I8	110.60 (4)	I3-P1-I1	108.72 (8)
I6-Ga-I9	109.75 (4)	P2-P1-I2	105.98 (10)
I8-Ga-I9	109.71 (4)	I3-P1-I2	109.04 (9)
I6-Ga-I7	112.18 (4)	I1-P1-I2	109.09 (9)
I8-Ga-I7	109.30 (4)	P1-P2-I4	95.56 (10)
I9-Ga-I7	105.15 (4)	P1-P2-I5	95.05 (10)
P2-P1-I3	106.25 (11)	I4-P2-I5	103.13 (9)
P2-P1-I1	117.50 (11)		

Table 2

Selected contact distancess (Å).

$[1 \cdots I7^{i}]$			3.4420 (9)	$I4 \cdot \cdot \cdot I6^{iii}$		3.7264 (8)
219			3.4002 (8)	151/		3.6598 (8)
Symmetry	codes:	(i)	$1 - r + \frac{1}{2} + r + \frac{1}{2} - r$	(ii) $1 \perp r \vee \tau$	(iiii)	$\frac{1}{1} \pm r + v + \frac{1}{2} = z$; (iv)

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) 1 + x, y, z; (iii) $\frac{1}{2} + x, y, \frac{1}{2} - z$; (iv) $\frac{1}{2} - x, \frac{1}{2} + y, z$.

Data collection: *IPDS Software Manual* (Stoe, 1997); cell refinement: *IPDS Software Manual*; data reduction: *IPDS Software Manual*; program(s) used to solve structure: *SIR*97 (Cascarano *et al.*, 1996); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997). *SCHAKAL* (Keller, 1995) and *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *PLATON*95 (Spek, 1995).

References

Aubauer, C., Engelhardt, G., Klapötke, T. M. & Schulz, A. (1999). J. Chem. Soc. Dalton Trans. pp. 1729–1733.

Bergerhoff, G. (1996). *DIAMOND*. Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.

- Cascarano, G., Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Siliqi, D., Burla, M. C., Polidori, G. & Camalli, M. (1996). *Acta Cryst.* A**52**, C-79.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Keller, E. (1995). SCHAKAL. University of Freiburg (Breisgau), Germany.

Pohl, S. (1983). Z. Anorg. Allg. Chem. 498, 20-24.

Schulz-Lang, E., Abram, U., Strähle, J. & Vazquez Lopez, E. M. (1998). Z. Anorg. Allg. Chem. 624, 999–1002.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (1995). PLATON95. University of Utrecht, The Netherlands.
- Stoe (1997). *IPDS Software Manual*. Version 2.81. Stoe Publication 4805–015, Darmstadt, Germany.
- Zak, Z. & Cernik, M. (1996). Acta Cryst. C52, 290-291.